منابع مشابه
The Equivalence Problem over Finite Rings
We investigate the computational complexity of deciding whether or not a given polynomial , presented as the sum of monomials, is identically 0 over a ring. It is proved that if the factor by the Jacobson-radical is not commutative, then the problem is coNP-complete.
متن کاملPolynomial Equivalence of Finite Rings
We prove that Zpn and Zp[t]/(t) are polynomially equivalent if and only if n ≤ 2 or p = 8. For the proof, employing Bernoulli numbers, we provide the polynomials which compute the carry-on part for the addition and multiplication in base p. As a corollary, we characterize finite rings of p elements up to polynomial equivalence.
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولCode Equivalence Characterizes Finite Frobenius Rings
In this paper we show that finite rings for which the code equivalence theorem of MacWilliams is valid for Hamming weight must necessarily be Frobenius. This result makes use of a strategy of Dinh and López-Permouth.
متن کاملThe Equivalence Problem of Multitape Finite Automata
Using a result of B.H. Neumann we extend Eilenberg’s Equality Theorem to a general result which implies that the multiplicity equivalence problem of two (nondeterministic) multitape finite automata is decidable. As a corollary we solve a long standing open problem in automata theory, namely, the equivalence problem for multitape deterministic finite automata. The main theorem states that there ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Symbolic Computation
سال: 1993
ISSN: 0747-7171
DOI: 10.1006/jsco.1993.1004